张永政
博士,教授
办公室:伟德国际1946源于英国107
E-mail: yzzhang@qfnu.edu.cn
研究生去向
2020级毕业生4名:吕慧君苏州大学读博
陈雪吉林大学读博
张凯悦天津理工大学读博
袁纯玉日本高知工科大学读博
教育背景研究经历
2019.12 – 今 教授,伟德国际1946源于英国;
2019.09 - 2019.12 副教授,伟德国际1946源于英国;
2018.04 - 2019.09 助理教授,日本高知工业大学;
2016.07 - 2018.06 助理研究员,日本東北大学;
2015.07 - 2016.06 主管研发工程师,汉能控股集团;
2011.07 - 2015.06 研究助理,中国工程物理研究院;
2010.09 - 2015.07 工学博士,材料科学与工程学院,北京工业大学;
2006.09 - 2010.07 工学学士,材料科学与工程学院,沈阳化工大学;
研究领域
半导体异质结构筑;能源转化;光/电催化
科研项目
2022.1-2024.12国家自然科学青年基金;
2021.1-2023.12山东省自然科学青年基金;
2022.1-2024.12山东省高校青年创新科技计划项目;
2020.1- 2024.12山东省泰山学者青年专家计划建设经费;
2019.7–2025.7伟德国际victor1946高层次人才引进专项经费;
荣誉称号及学术兼职
1. 山东省高等学校青年创新团队带头人
2. 山东省“泰山学者”青年专家计划
3. 浙江省“南太湖精英计划”创新领军人才
4. 日本金属学会外籍会员(2017~今)
近三年文章
[1] Defect and donor manipulated highly efficient electron-hole separation in a 3D nanoporous Schottky heterojunction. JACS Au, 2023, 3(11): 3127-3140.
[2] Regulated surface electronic states of CuNi nanoparticles through metal-support interaction for enhanced electrocatalytic CO2 reduction to ethanol. Small, 2023, 19(32): 2300281.
[3] Three-dimensional nanoporous heterojunction of CdS/np-rGO for highly efficient photocatalytic hydrogen evolution under visible light. Carbon, 2023, 206(25): 237-245.
[4] Efficient charge transfer and effective active sites in lead-free halide double perovskite S-scheme heterojunctions for photocatalytic H2 evolution. Small Methods, 2023, 7(3): 2201365.
[5] The insight into the critical role of photoexcitation in manipulating charge carrier migration in piezo-photocatalytic S-scheme heterojunction. Materials Today Physics, 2023, 37: 101212.
[6] Adjusted preferential adsorption of intermediates via regulation of the electronic structure during the electrocatalytic CO2 reduction process. The Journal of Physical Chemistry Letters, 2023, 15(1): 34-42.
[7] Self-tuned interfacial charges induced by protonated transition metal heterostructure for efficiently acidic hydrogen evolution reaction. Chemical Engineering Journal, 2023, 476(15): 146387.
[8] In situ reconstruction of Bi nanoparticles confined within 3D nanoporous Cu to boost CO2 electroreduction. Science China Materials, 2024, 67: 796-803.
[9] In-situ formation of SrTiO3/Ti3C2 MXene Schottky heterojunction for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2024, 653: 482-492.
[10] Co-Doped Fe3S4 nanoflowers for boosting electrocatalytic nitrogen fixation to ammonia under mild conditions. Inorganic Chemistry, 2022, 61(49): 20123-20132.
[11] The interface design of (0D/2D/1D) AgI/BiOI/C3N5 dual Z-scheme heterostructures with efficient visible-light-driven photocatalytic activity. Separation and Purification Technology, 2023, 308(1): 122815.
[12] Fabrication of 2D/1D Bi2WO6/C3N5 heterojunctions for efficient antibiotics removal. Powder Technology, 2023, 413: 118083.
[13] Construction of 0D/2D CeO2/CdS direct Z-scheme heterostructures for effective photocatalytic H2 evolution and Cr(VI) reduction. Separation and Purification Technology, 2022, 295(15): 121294.
[14] Highly efficient and recyclable Z-scheme heterojunction of Ag3PO4/g-C3N4 floating foam for photocatalytic inactivation of harmful algae under visible light. Chemosphere, 2023, 317: 137773.
[15] Visible-light-driven AgI/Bi4O5I2 S-scheme heterojunction for efficient tetracycline hydrochloride removal: Mechanism and degradation pathway. Chemosphere, 2023, 337: 139326.
[16] CdS/MoS2 nanoparticles anchored on oxygen-doped g-C3N4 nanosheets all-solid-state Z-scheme heterojunctions for efficient H2 evolution. International Journal of Hydrogen Energy, 2024, 51(2): 433-442.
[17] Hierarchical Ti3C2 MXene/Zn3In2S6 Schottky junction for efficient visible-light-driven Cr(VI) photoreduction. Ceramics International, 2022, 48(8), 11320-11329.
[18] 0D/2D Co-doped Fe2O3/g-C3N4 Z-scheme heterojunction for efficient photo-Fenton organic pollutant removal. Journal of Alloys and Compounds, 2024, 982(30): 173771.
[19] Copper nanoparticles-modified Na0.5Bi4.5Ti4O15 micron-sheets as a highly efficient and low cost piezo-photocatalyst. Journal of Alloys and Compounds, 2023, 935(15): 168130.
[20] Facile synthesis of P-doped ZnIn2S4 with enhanced visible-light-driven photocatalytic hydrogen production. Molecules, 2023, 28(11): 4520.
[21] Construction of Electrostatic Self-Assembled 2D/2D CdIn2S4/g-C3N4 heterojunctions for efficient visible-light-responsive molecular oxygen activation. Nanomaterials, 2021, 11(9): 2342.
课题组氛围
每年招收3-4名物理/材料/化学等相关专业学术型和专业型硕士研究生,欢迎报考。